
CPFI 2019 Annual Conference

Herb-Drug Interactions: Pharmacokinetic Mechanisms and Implications for Patients

> May 23, 2019 Phillip M. Gerk, PharmD, PhD pmgerk@vcu.edu

Objectives

- Describe mechanisms of inhibition and induction of drug clearance pathways (enzymes and transporters)
- Explain mechanisms of selected herb-drug interactions
- Apply these concepts to patient care

Pharmacy Students and Dietary Supplements

- Axon et al, AJPE 2017: 81(5); article 92.
 - U.Arizona pharmacy students: twice as likely to have used DS (52% vs. 25% general pop.)
 - considered DS label info "unhelpful"
 - available research on DS "inadequate"
 - their education on DS "inadequate"
- DS sales in US 2017: ~\$36,000,000,000

Absorption: First Pass Effect

- First-Pass Effect:
 - Drug orally administered
 - -Solubility and permeability
 - Pass through enterocytes (transport and/or metabolism)
 - Liver may extract most, some, or little of the drug, before it gets to systemic circulation

 $F_{oral} = F_a * F_g * F_h$

First-Pass Effect: Resveratrol

- ~70% of oral dose gets "absorbed"
- Vast majority of this exists in the body as various metabolites
- <1% of oral dose gets into blood circulation as unchanged resveratrol
- So resveratrol absolute oral bioavailability is <1%!

PK Implications of Hepatic First-Pass

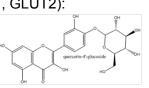
- If first-pass is minimal, then...
- If first-pass is extensive, then...

Absorption of Herbals

- Druggability: in addition to receptor binding, a compound must have a favorable balance of solubility (to dissolve in GI fluids) and lipophilicity (to cross biological membranes)
- Many herbal components are hydrophilic and good bioavailability would not be expected
- However, data suggest that several gl<u>U</u>cosides have unexpectedly high oral bioavailability
 - May involve uptake via glucose transporters, such as SGLT (sodium-glucose transporters)

Walle, Drug Metab Dispos 2004

Bioavailability of Herbal Products

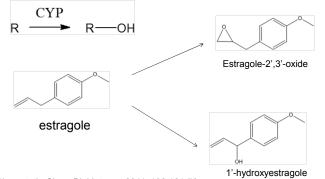

- Typically see two problems:
 1: compounds are too hydrophilic
 - 2: compounds have functional groups susceptible to first-pass metabolism or gut degradation

Herbal Info Pitfalls: Bioavailability

- Consider route of administration
- Consider interspecies differences
- Consider dose and formulation
- Consider what was actually measured

Herbal Transport

- Efflux transporters
 - P-glycoprotein:
 - berberine
 - Breast cancer resistance protein:
 - resveratrol
- Uptake transporters
 - Glucose transporters (SGLT1, GLUT2):
 - quercetin glucosides

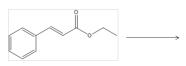


Herbal/Drug Metabolism

- Primarily in the gut wall and the liver
- Phase I reactions
 - Addition of small polar groups by oxidation, reduction, or hydrolysis
 - Convert lipid soluble drugs to inactive, more polar metabolites
- Phase II reactions
 - Formation of highly water soluble conjugates
 - Resulting compound is inactive and easily eliminated

Human Metabolic Enzymes

 <u>PHASE I ENZYMES</u> Cytochrome P450s (CYP)


Chen et al., Chem Biol Interact 2011; 192:161-76.

Human Metabolic Enzymes

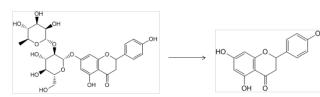
PHASE I ENZYMES

Esterases:

cleave ester bonds to release acids and alcohols

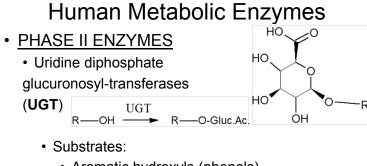
Ethyl cinnamate

страно си страна ethanol


Cinnamic acid

Human Metabolic Enzymes

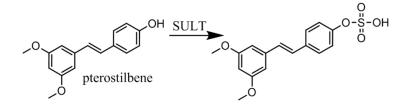
PHASE I ENZYMES


Saccharidases (various):

Cleave glycones from glycosides to release aglycones

naringin

naringenin



- Aromatic hydroxyls (phenols)
- Aliphatic hydroxyls (alcohols)
- · Carboxyls (acids)
- amines

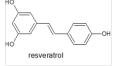
Human Metabolic Enzymes

PHASE II ENZYMES

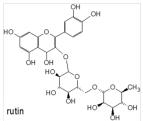
- Sulfotransferases (SULT)
 - Substrates:
 - Aromatic hydroxyls (phenols)

Enteric Metabolism

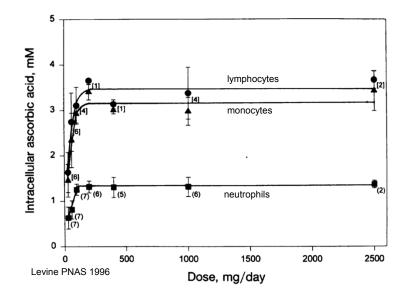
- · Herbal constituents exposed to gut flora
- Gut flora metabolize compounds before reaching GI epithelium
- Some C=C double bonds reduced by bacteria
- Bacterial glycosidases and glucuronidases: cleave off sugars, release aglycones
- Aglycones may be less chemically stable in gut environment than the glycosides
- Aglycones may be more or less well absorbed than the glycosides


Human Metabolic Enzymes

- PHASE II ENZYMES
 - Catechol-O-methyltransferases (COMT)
 - Substrates:
 - Catechols

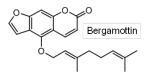


Enteric Metabolism

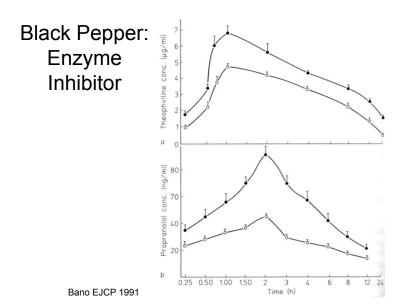

• Reduction of C=C bond:

Cleavage of glycosides:

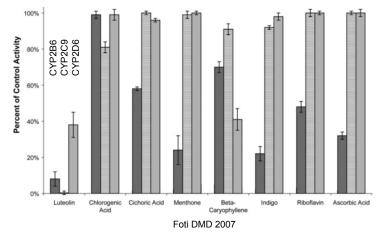
Consequences of Metabolism


Quantitating an Herb-Drug Interaction

• Key PK Parameters:


Grapefruit Juice and Atorvastatin

- GFJ increases atorvastatin (acid) AUC by 83%
- Mechanism? possibly CYP enzyme or ABC transporter inhibition
- Serious side effects (rhabdomyolysis) have been reported
- This interaction does not occur with pitivastatin


Grapefruit Juice Effects :

- Inhibition of several CYP enzymes
- nisoldipine: 500% (5-fold)
- cyclosporine: 300%
- terfenadine: 55% increase in fexofenadine AUC
- felodipine: 2-3 fold increase.
- HMG CoA reductase inhibitors (e.g. lovastatin, simvastatin, atorvastatin)

Interactions between Natural Products and CYP Enzymes

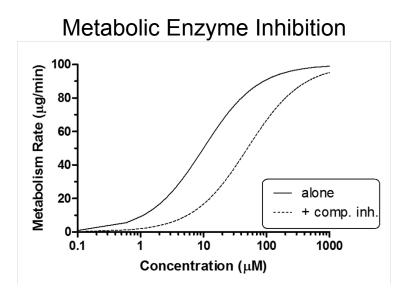
CYP Inhibition			
luct	Component	Enzyme Isoform(
is fruit	bergamottin, tangeretin	CYP1A2, 3A4	
thistle	silybin	CYP2E1, 3A4	
	isoflavones (genistein,	CYP1A1, 1A2, 1B1 2E1	

	daidzein)	221
St. John's wort	hyperforin, quercetin	CYP3A4
various	flavonoids	CYP1A1, 1A2, 2B6,

•Transporter inhibition also likely; •not as well established in the literature

Prod citru

milk


soy

Cytochrome P450 (CYP) Inhibitor

- Compound that decreases CYP450 enzyme activity leading to <u>decrease in metabolism rate</u> <u>of substrate</u>
- Decreases clearance and increases concentrations (AUC) of substrate
- One compound can be both an inhibitor and substrate (erythromycin)

Enzyme Inhibition: Clinical Implications

- What clinical implications might you expect from an herb-drug interaction resulting in enzyme (or transporter) inhibition?
 - drug toxicity
 - increased side effects ("off-target")
 - need to reduce dose
 - decreased patient adherence to med regimen
 - increased health care utilization

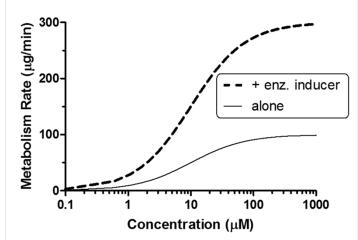
Enzyme Kinetics

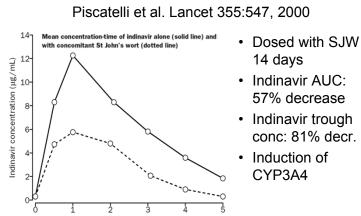
Other HDI's

- Black Cohosh
 - inhibits CYP2D6
 - with atorvastatin: hepatotoxicity
- Goldenseal
 - inhibitor of CYP3A4 & CYP2D6
- Sesamin (from sesame/oil)
 - suicide inhibitor of CYP2C9

Berberine HDI

• Berberine: used for type 2 diabetes

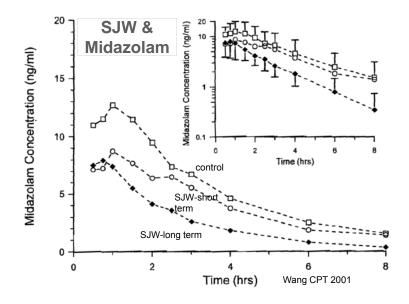



- inhibits multiple drug clearance mechanisms:
 - metabolism by CYP3A
 - efflux transport by P-glycoprotein (P-gp)
 - renal clearance by organic cation transporters (OCT's)

CYP Inducer

- Compound that increases CYP enzyme activity leading to increase in metabolism of substrate
- Inducers can affect multiple CYP enzymes (carbamazepine, rifampin)
- Can be an inducer of one enzyme and inhibitor of another (omeprazole)
- Typically increases the level of enzyme production
- Takes time (3-14 days)

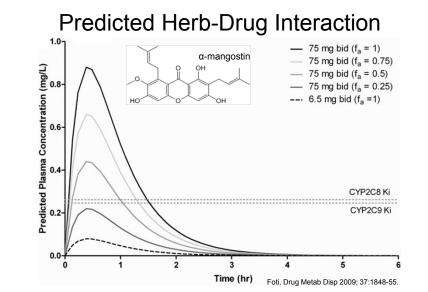
Metabolic Enzyme Induction



Time (h)

Effect of St. John's Wort on Indinavir

- **Enzyme Induction: Clinical Implications**
- What clinical implications might you expect from an herb-drug interaction resulting in enzyme (or transporter) induction?
 - loss of efficacy
 - decreased side effects
 - altered metabolite profile
 - · decreased formation of active metabolite
 - · increased formation of toxic metabolite
 - need to increase dose
 - · toxicity when herb discontinued
 - decreased patient adherence to med regimen
 - increased health care utilization

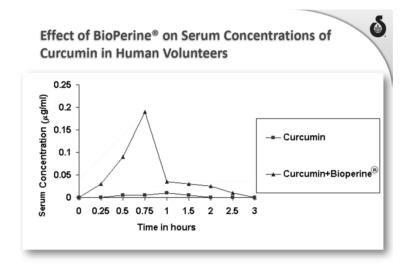


Patient Case

 A patient new to your pharmacy comes in with 2 new Rx's. You collect all the info, and find out the patient takes 3 oz. BID of Xango[®] juice. Does this pose any concern for herb-drug interactions?

Xango[®] Juice

- Mix of mangosteen and other juices
- · High concentration of xanthones
- "...stacks of supporting research..." (www.xango.com)
- "...insufficient evidence at this time to support the use of mangosteen..." (*Nutrients* 2013, 5(8), 3163-3183; doi:10.3390/nu5083163)
- Website video (2012):
 - "people wonder..." (about interactions with drugs)
 - "Xango is a *natural* food, used by millions"
 - "...not regulated by the FDA..."
 - "Xango is for everyone."


Predicted Herb-Drug Interaction β-Mangostin 120-100-Percent of T₀ 80-60β-mangostin OH 40-20-0 CYPIAZ AC CHARGE CHARCE CHARCE CHARDE CHARDE α-mangostin OH

Positive Herb-Drug Interactions

- Silymarin or ellagic acid: may protect against hepatotoxicity of acetaminophen (Girish Fund.Clin.Pharmacol. 2008; 22:623-32)
- Grapefruit juice: lower drug doses to save \$?
 Issues:

Natural Products Interactions

- Amatoxins: mushroom poisons
 - polypeptides, accumulate in liver & kidney
 - diarrhea, liver failure, death
- Silibinin:
 - from milk thistle extract
 - antidote for amatoxin poison
 - inh. hepatic amatoxin uptake
 - stim. hepatic protein synth.
 - product: "Legalon SIL" in clinical trials

Pharmacist's Role in Rational Phytotherapy

- Obtain herbal meds usage history
- Counsel patients regarding the differences between FDA-regulated medications and herbal therapies
- Screen patient's med profile for drugherb interactions
- Provide safety and efficacy information on use of herbal products

Pharmacist's Role in Rational Phytotherapy (cont'd)

- Evaluate literature, interpret clinical (and pre-clinical) data
- Report observed HDI to FDA
- · Publish case reports

a Corporation | Confidential | www.sab

• Design appropriate clinical studies